Bases: Model
        Model which wraps another model.
Does nothing on its own, used as a base class.
              
                Source code in pydantic_ai_slim/pydantic_ai/models/wrapper.py
                15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63  | @dataclass(init=False)
class WrapperModel(Model):
    """Model which wraps another model.
    Does nothing on its own, used as a base class.
    """
    wrapped: Model
    """The underlying model being wrapped."""
    def __init__(self, wrapped: Model | KnownModelName):
        super().__init__()
        self.wrapped = infer_model(wrapped)
    async def request(self, *args: Any, **kwargs: Any) -> ModelResponse:
        return await self.wrapped.request(*args, **kwargs)
    @asynccontextmanager
    async def request_stream(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> AsyncIterator[StreamedResponse]:
        async with self.wrapped.request_stream(messages, model_settings, model_request_parameters) as response_stream:
            yield response_stream
    def customize_request_parameters(self, model_request_parameters: ModelRequestParameters) -> ModelRequestParameters:
        return self.wrapped.customize_request_parameters(model_request_parameters)
    @property
    def model_name(self) -> str:
        return self.wrapped.model_name
    @property
    def system(self) -> str:
        return self.wrapped.system
    @cached_property
    def profile(self) -> ModelProfile:
        return self.wrapped.profile
    @property
    def settings(self) -> ModelSettings | None:
        """Get the settings from the wrapped model."""
        return self.wrapped.settings
    def __getattr__(self, item: str):
        return getattr(self.wrapped, item)  # pragma: no cover
  | 
 
               
  
            wrapped
  
      instance-attribute
  
wrapped: Model = infer_model(wrapped)
 
    
        The underlying model being wrapped.
     
 
            settings
  
      property
  
    
        Get the settings from the wrapped model.